Group characters, permutation actions and sharpness

نویسندگان

  • Kenneth W. Johnson
  • Eirini Poimenidou
چکیده

We extend the work which has appeared in papers on sharp characters and originated with Blichfeldt and Maillet to the Burnside ring of a finite group G. We show that the polynomial whose zeros are the set of marks of non-identity subgroups on a faithful G-set X evaluated at X is an integral multiple of the regular G-set, and deduce a result about the size of a base of X . Further consequences for ordinary group characters are obtained by re-examining Blichfeldt’s work and we provide alternative definitions of sharpness. Conjectures are given related to the set of values of a permutation character, and it is proved that for a faithful transitive G-set X certain polynomials (in the Burnside ring) evaluated at X necessarily give G-sets. c © 2003 Elsevier Science Ltd. All rights reserved. MSC: primary 20C15; secondary 20C20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Groups, Designs and Codes

Introduction Terminology and notation Group Actions and Permutation Characters Method 1 References Finite Groups, Designs and Codes J Moori School of Mathematical Sciences, University of KwaZulu-Natal Pietermaritzburg 3209, South Africa ASI, Opatija, 31 May –11 June 2010 J Moori, ASI 2010, Opatija, Croatia Groups, Designs and Codes Abstract Introduction Terminology and notation Group Actions an...

متن کامل

Multiplicity-Free Permutation Characters in GAP, part 2

We complete the classification of the multiplicity-free permutation actions of nearly simple groups that involve a sporadic simple group, which had been started in [BL96] and [LM].

متن کامل

QUASI-PERMUTATION REPRESENTATIONS OF METACYCLIC 2-GROUPS

By a quasi-permutation matrix we mean a square matrix over the complex field C with non-negative integral trace. Thus, every permutation matrix over C is a quasipermutation matrix. For a given finite group G, let p(G) denote the minimal degree of a faithful permutation representation of G (or of a faithful representation of G by permutation matrices), let q(G) denote the minimal degree of a fa...

متن کامل

Generalised Classes in Groups and Association Schemes: Duals of Results on Characters and Sharpness

A result of Strunkov on generalised conjugacy classes of groups is most conveniently expressed in terms of the P-matrix of an association scheme. This result is dual to a result of Blichfeldt on permutation characters, which has been shown by Cameron and Kiyota to hold for arbitrary characters and led to the definition of sharp characters. We show that the result carries over to arbitrary (comm...

متن کامل

Finding Possible Permutation Characters

We describe three different methods to compute all those characters of a finite group that have certain properties of transitive permutation characters. First, a combinatorial approach can be used to enumerate vectors of multiplicities. Secondly, these characters can be found as certain integral solutions of a system of inequalities. Thirdly, they are calculated via Gaussian elimination. The me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2003